Quiz 11 Chemical Engineering Thermodynamics April 4, 2019

A feed stream (F) of $z_1 = 0.7$ ethanol and $z_2 = 0.3$ methanol at 50°C and 0.2 MPa (1520 mmHg) is fed into a flash tank at 0.1 MPa (760 mmHg) resulting in a liquid (L) and a vapor (V) stream.

- a) First determine the state (L, V, or L/V) of the feed stream (F) using the bubble point pressure at 50 °C. (*First determine the appropriateness of Antoine's equation.*)
- b) Repeat this determination of the state (L, V, or L/V) by finding the bubble point temperature at 0.2 MPa of the feed stream. (*First determine the appropriateness of Antoine's equation.*)
- c) Calculate the bubble and dew temperatures at 760 mmHg (0.1 MPa).
- d) If the receiving tank were kept at 347K (74°C) what would be the composition and flow rates for the two streams (L and V) based on the feed rate, F?
- e) What is the heat flow needed to maintain the receiving tank at 74° C? (Use the feed stream as the reference point for enthalpy = 0.)
- f) Why is this separation so sensitive to the temperature? (Extra credit.)

Use the Antoine's Equation to calculate the vapor pressure and assume the vapors follow Raoult's law.

$$\log_{10} P^{sat} = A - \frac{B}{T+C}$$

where Psat is in mmHg, and T is in Celsius. Additional Antoine constants are tabulated in

$$\sum_{i} \frac{z_i(1-K_i)}{1_i + (V/F)(K_i - 1)} = 0$$

For isothermal flash.

Answer Sheet:

- a) Bubble Pressure: State:
- b) Bubble Point Temperature State:

c)
$$V/F =$$

x1 =
y1 =

d) Q =

e)

E.3. Antoine Constants

The following constants are for the equation

$$\log_{10} P^{sat} = A - \frac{B}{T+C}$$

where P^{sat} is in mmHg, and T is in Celsius. Additional Antoine constants are tabulated in

Antoine.xls.

	A	В	С	T range (°C)	Source
Ethanol	8,11220	1592.864	226,184	20-93	a
Hexane	6.91058	1189.64	226.28	-30-170	a
1-Propanol	8.37895	1788.02	227.438	-15-98	а
2-Propanol	8.87829	2010.33	252.636	-26-83	a
Methanol	8.08097	1582.271	239.726	15-84	a

E.3. Antoine Constants

The following constants are for the equation

$$\log_{10}P^{sat} = A - \frac{B}{T+C}$$

where Psat is in mmHg, and T is in Celsius. Additional Antoine constants are tabulated in

Antoine.xls.

	A	В	С	T range (°C)	Source
Ethanol	8.11220	1592.864	226.184	20-93	a
Hexane	6.91058	1189.64	226.28	-30-170	а
1-Propanol	8.37895	1788.02	227.438	-15-98	a
2-Propanol	8.87829	2010.33	252.636	-26-83	a
Methanol	8.08097	1582.271	239.726	15-84	a
			-		-

	ΔH _{f,298.15}	$\Delta G_{f,298.15}$		Heat Capac	ity Constants	
	kJ/mol	kJ/mol	Α	B	C	D
0100000	C. 1. 80 7 10 107					
iquids, over the tempe	erature range f	rom 273.15	to 373.15			
Ethanol	erature range f	rom 273.15	to 373.15 281.6	5 Ka -1.435	2.903E-03	
	erature range f	rom 273.15		1		

Gas state:

1101 Methanol	-200.94	-162.24	21.15	0.07092	2.587E-05	-2.852E-08
1102 Ethanol	-234.95	-167.73	9.014	0.2141	-8.390E-05	1.373E-09
1102 D	322.3	171 202	2.17	0.3335	1 02212 04	1 20/12 00

Heat of Vap	orization at 76	50 mmHg		
	тьс	DHvap kJ/mc	ть к	DH J/mole
Methanol	64.7	38.278	337.7	38278
Ethanol	78.5	38.58	351.5	38580

Answers Quiz 11 Chemical Engineering Thermodynamics April 4, 2019

Answer Sheet:

- a) Bubble Pressure: **280 mmHg** (*0.0431 (0.0368)* MPa) at 50°C State: L at 1520 mmHg
- b) Bubble Point Temperature: **365K** if you used 760 mmHg *and* **346K** *for* 0.1 *MPa* State: Liquid at 323K and 760 mmHg (0.1 MPa)

If you used 35MPa for the pressure (a typo) you get 636K (363°C).

- c) Bubble Temperature at 760 mmHg: **346.5K** (*346.2K at 750 mmHg*) Dew Temperature at 760 mmHg: **348K** (*348K at 750 mmHg*)
- d) V/F = 0.403 (0.28 to 0.493) x1 = 0.255 (0.26 to 0.24) y1 = 0.366 (0.38 to 0.36)
- e) Q = 34.7 kJ/(mole feed) 764.2 mmHg 760 mmHg 756 mmHg 33.2 kJ/MolF 34.7 kJ/MolF 53.7 kT/MolF
- f) The temperature gap is small because the two components are thermodynamically and chemically very similar. The heat of vaporization differs by 1%, the boiling point differs by about 3%. The densities are 0.789 g/cc and 0.792 g/cc differ by 0.4%. There is not much to distinguish these two alcohols, hence it is very difficult to separate them. This is a big problem since methanol is toxic, causing blindness and other problems, while ethanol can be tolerated in low concentrations.

a) First determine the state (L, V, or L/V) of the feed stream (F) using the bubble pressure at 50 °C. (*First determine the appropriateness of Antoine's equation.*)

	A	В	С					
methanol	8.08097	1582.271	239.726	15-84C				
ethanol	8.1122	1592.864	226.184	20-93 C				
Temp, K	323	Temp, C	50					
Pressure,mmHg	1520	P, Mpa	0.2					
	Feed	Liquid	Vapor	Psat, mmHg	Ki	yi	Feed* Psat	
Methanol	0.3			416.584539	0.27406878	0.08222063	124.975362	
Ethanol	0.7			221.206843	0.14553082	0.10187157	154.84479	
						Pb at 50C =	279.820152	mmH
						Pb at 50C =		

b) Repeat this determination of the state (L, V, or L/V) by finding the bubble point temperature and/or the dew point temperature at 35.0 MPa of the feed stream. (*First determine the appropriateness of Antoine's equation.*)

Antoine Equa	tion Constant	ts				
	А	в	С			
methanol	8.08097	1582.271	239.726	15-84C		
ethanol	8.1122	1592.864	226.184	20-93 C		
Temp, K	365.22978	Temp, C	92.22978			
Pressure,mm	1520	P, Mpa	0.2			
	Feed	Liquid	Vapor	Psat, mmHg	Ki	yi
Methanol	0.3			2062.80715	1.35710997	0.40713299
Ethanol	0.7			1287.36867	0.84695307	0.59286715
					sum yi =	1.0000014
				So stream is	a liquid	

	uation Const	ants									
	Α	В		С							
methanol	8.080	97 1582.	271	23	9.726	15-84	С				
ethanol	8.11	22 1592	.864	22	6.184	20-93	С				
Temp, K	346.5091	94 Temp, C		73.509	1944						
Pressure,mm	nl 70	60 P, Mpa			0.1						
	Feed	Liquid		Vapor		Psat,	mmHg	Ki		yi	
Methanol	0	.3				107	0.5003	1.40	0855303	0.4	42256591
Ethanol	0	.7				626.9	928161	0.82	2490548		
								sum	yi =	0.9	99999974
						So str	eam is	a liq	uid		
Antoine Equa	ation Constant	s									
	А	В		С							
methanol	8.08097	1582.271		239.726		-					
ethanol	8.1122	1592.864		226.184	20-93	С					
Temp, K	348.006835	Temp, C	75.	0068352							
Pressure,mml	760	P, Mpa		0.1							
	Feed	Liquid	Vap	or		mmHg			yi		xi
Methanol	0.3				-						0.2015168
Ethanol	0.7				666.2	263449	0.8766	6243		637	0.79848294
									Sumxi =		0.9999997

c) Calculate the bubble and dew temperatures at 760 mmHg (0.1 MPa).

d) If the receiving tank were kept at 347K (74°C) what would be the composition and flow rates for the two streams (L and V) based on the feed rate, F?

Antoine Equ	ation Constar	nts							
	A	В	С						
methanol	8.08097	1582.271	239.726	15-84C					
ethanol	8.1122	1592.864	226.184	20-93 C				(1-K)	
							$\Sigma - $	$i^{(1-K_i)}$	
Temp, K	347	Temp, C	74				$\Delta_i 1_i + ($	$\frac{v_i(1-K_i)}{V/F(K_i-K_i)}$	1)
Pressure,mmł	764.2	P, Mpa	0.1005526					-	
V/F	0.2840321								
	Feed	Liquid	Vapor	Psat, mmHg	Ki	yi	Test	xi	
Methanol	0.3			1090.1578	1.4265347	0.3817157	-0.114133	0.2675825	
Ethanol	0.7			639.59912	0.8369525	0.6143162	0.1141332	0.7339917	
					sum yi =	0.9960319	4.799E-11	1.0015742	
				0.1453544					
				0.0852799					
				ть	346				
				Td	348				
						TrefC	T Ref K		
						50	323		
Heat Capacity	Constants	TK Cp in J/m	я-к						
		в		D		Q=HL+HV-H	HL	HV	
		7.09E-02				MeOH	1.44E+04		
ethanol ig		2.14E-01				EtOH	3.57E+04		
						Total	3.00E+04		
methanl Lig	111.7	-0.4264	1.09E-03				J/(mole feed		
		-1.435					kJ/(mole fee		
and the set	201.0	-1.400	2.002-00			5.522.01	io) (more ree	.,	
Heat of Vano	rization at 76	0 mmHg							
		DHvap kJ/m	ThK	DH I/male					
Methanol		38.278							
Ethanol	78.5	38.58							
Ethanol	76.5	38.58	301.5	.56560					

e) What is the heat flow needed to maintain the receiving tank at 74° C? (Use the feed stream as the reference point for enthalpy = 0.)

See above.