Quiz 11

Chemical Engineering Thermodynamics

April 4, 2019

A feed stream (F) of $z_{1}=0.7$ ethanol and $z_{2}=0.3$ methanol at $50^{\circ} \mathrm{C}$ and $0.2 \mathrm{MPa}(1520 \mathrm{mmHg})$ is fed into a flash tank at $0.1 \mathrm{MPa}(760 \mathrm{mmHg})$ resulting in a liquid (L) and a vapor (V) stream.
a) First determine the state (L, V, or L / V) of the feed stream (F) using the bubble point pressure at $50^{\circ} \mathrm{C}$. (First determine the appropriateness of Antoine's equation.)
b) Repeat this determination of the state (L, V, or L / V) by finding the bubble point temperature at 0.2 MPa of the feed stream. (First determine the appropriateness of Antoine's equation.)
c) Calculate the bubble and dew temperatures at $760 \mathrm{mmHg}(0.1 \mathrm{MPa})$.
d) If the receiving tank were kept at $347 \mathrm{~K}\left(74^{\circ} \mathrm{C}\right)$ what would be the composition and flow rates for the two streams (L and V) based on the feed rate, F ?
e) What is the heat flow needed to maintain the receiving tank at $74^{\circ} \mathrm{C}$? (Use the feed stream as the reference point for enthalpy $=0$.)
f) Why is this separation so sensitive to the temperature? (Extra credit.)

Use the Antoine's Equation to calculate the vapor pressure and assume the vapors follow Raoult's law.

$$
\log _{10} P^{s a t}=A-\frac{B}{T+C}
$$

where $P^{s a t}$ is in mmHg , and T is in Celsius. Additional Antoine constants are tabulated in
$\sum_{i} \frac{z_{i}\left(1-K_{i}\right)}{1_{i}+(V / F)\left(K_{i}-1\right)}=0$
For isothermal flash.
Answer Sheet:
a) Bubble Pressure:

State:
b) Bubble Point Temperature

State:
c) $\mathrm{V} / \mathrm{F}=$
$\mathrm{x} 1=$
$\mathrm{yl}=$
d) $\mathrm{Q}=$
e)

E.3. Antoine Constants

The following constants are for the equation

$$
\log _{10} P^{s a t}=A-\frac{B}{T+C}
$$

where $P^{s a t}$ is in mmHg , and T is in Celsius. Additional Antoine constants are tabulated in

Antoine.xls.

	A	B	C	T range $\left({ }^{\circ} \mathrm{C}\right)$	Source
Ethanol	8.11220	1592.864	226.184	$20-93$	a
Hexane	6.91058	1189.64	226.28	$-30-170$	a
1-Propanol	8.37895	1788.02	227.438	$-15-98$	a
2-Propanol	8.87829	2010.33	252.636	$-26-83$	a
Methanol	8.08097	1582.271	239.726	$15-84$	a

E.3. Antoine Constants

The following constants are for the equation

$$
\log _{10} P^{s a t}=A-\frac{B}{T+C}
$$

where $P^{s a t}$ is in mmHg , and T is in Celsius. Additional Antoine constants are tabulated in

Antoine.xls.

	A	B	C	T range $\left({ }^{\circ} \mathrm{C}\right)$	Source
Ethanol	8.11220	1592.864	226.184	$20-93$	${ }^{\mathrm{a}}$
Hexane	6.91058	1189.64	226.28	$-30-170$	${ }^{\mathrm{a}}$
1-Propanol	8.37895	1788.02	227.438	$-15-98$	${ }^{a}{ }^{a}$
2-Propanol	8.87829	2010.33	252.636	$-26-83$	${ }^{a}$
Methanol	8.08097	1582.271	239.726	$15-84$	${ }^{a}$

		$\Delta \mathrm{H}_{f, 298.15}$	$\Delta \mathrm{G}_{f, 298.15}$	Heat Capacity Constants			
		$\mathrm{kJ} / \mathrm{mol}$	$\mathrm{kJ} / \mathrm{mol}$	A	B	C	D

Liquids, over the temperature range from 273.15 to $373.15 \mathrm{~K}^{2}$

Ethanol				281.6	-1.435	$2.903 \mathrm{E}-03$
	Ethylene oxide			174.9	$-7.184 \mathrm{E}-01$	$1.432 \mathrm{E}-03$
	Methanol			111.7	$-4.264 \mathrm{E}-01$	$1.090 \mathrm{E}-03$

Gas state:

1101 Methanol	-200.94	-162.24	21.15	0.07092	$2.587 \mathrm{E}-05$	$-2.852 \mathrm{E}-08$
1102 Ethanol	-234.95	-167.73	9.014	0.2141	$-8.390 \mathrm{E}-05$	$1.373 \mathrm{E}-09$
10 m						

Heat of Vaporization at 760 mmHg

	TbC	DHvap kJ/m4 Tb K		DHJ/mole	
Methanol	64.7	38.278	337.7	38278	
Ethanol		78.5	38.58	351.5	38580

Answers Quiz 11
 Chemical Engineering Thermodynamics
 April 4, 2019

Answer Sheet:
a) Bubble Pressure: $280 \mathbf{m m H g}(0.0431(0.0368) \mathrm{MPa})$ at $50^{\circ} \mathrm{C}$

State: L at 1520 mmHg
b) Bubble Point Temperature: $\mathbf{3 6 5 K}$ if you used 760 mmHg and $\mathbf{3 4 6 K}$ for 0.1 MPa

State: Liquid at 323 K and $760 \mathrm{mmHg}(0.1 \mathrm{MPa})$
If you used $35 M P$ a for the pressure (a typo) you get $\mathbf{6 3 6 K}\left(363^{\circ} \mathrm{C}\right)$.
c) Bubble Temperature at 760 mmHg : 346.5K (346.2K at 750 mmHg)

Dew Temperature at 760 mmHg : 348K ($\mathbf{3 4 8 K}$ at 750 mmHg)
d) $\mathrm{V} / \mathrm{F}=0.403(0.28$ to 0.493$)$
$\mathrm{x} 1=0.255 \quad(0.26$ to 0.24$)$
$\mathrm{y} 1=0.366 \quad(0.38$ to 0.36$)$
e) $\mathrm{Q}=34.7 \mathrm{~kJ} /($ mole feed $) \quad 764.2 \mathrm{mmHg} \quad 760 \mathrm{mmHg} \quad 756 \mathrm{mmHg}$
$33.2 \mathrm{~kJ} / \mathrm{MolF} 34.7 \mathrm{~kJ} / \mathrm{MolF} 53.7 \mathrm{kT} / \mathrm{MolF}$
f) The temperature gap is small because the two components are thermodynamically and chemically very similar. The heat of vaporization differs by 1%, the boiling point differs by about 3%. The densities are $0.789 \mathrm{~g} / \mathrm{cc}$ and $0.792 \mathrm{~g} / \mathrm{cc}$ differ by 0.4%. There is not much to distinguish these two alcohols, hence it is very difficult to separate them. This is a big problem since methanol is toxic, causing blindness and other problems, while ethanol can be tolerated in low concentrations.
a) First determine the state (L, V, or L / V) of the feed stream (F) using the bubble pressure at $50^{\circ} \mathrm{C}$. (First determine the appropriateness of Antoine's equation.)

Antoine Equation Constants								
	A	B	C					
methanol	8.08097	1582.271	239.726	15-84C				
ethanol	8.1122	1592.864	226.184	20-93 C				
Temp, K	323	Temp, C	50					
Pressure,mmHg	1520	P, Mpa	0.2					
	Feed	Liquid	Vapor	Psat, mmHg	Ki	yi	Feed* Psat	
Methanol	0.3			416.584539	0.27406878	0.08222063	124.975362	
Ethanol	0.7			221.206843	0.14553082	0.10187157	154.84479	
						Pb at $50 \mathrm{C}=$	279.820152	mmHg
						Liquid at 1520 mmHg		

b) Repeat this determination of the state (L, V, or L / V) by finding the bubble point temperature and/or the dew point temperature at 35.0 MPa of the feed stream. (First determine the appropriateness of Antoine's equation.)

Antoine Equation Constants						
	A	B	C			
methanol	8.08097	1582.271	239.726	15-84C		
ethanol	8.1122	1592.864	226.184	20-93 C		
Temp, K	365.22978	Temp, C	92.22978			
Pressure,mm\|	1520	P, Mpa	0.2			
	Feed	Liquid	Vapor	Psat, mmHg	Ki	yi
Methanol	0.3			2062.80715	1.35710997	0.40713299
Ethanol	0.7			1287.36867	0.84695307	0.59286715
					sum yi $=$	1.00000014
				So stream is a liquid		

c) Calculate the bubble and dew temperatures at $760 \mathrm{mmHg}(0.1 \mathrm{MPa})$.

d) If the receiving tank were kept at $347 \mathrm{~K}\left(74^{\circ} \mathrm{C}\right)$ what would be the composition and flow rates for the two streams (L and V) based on the feed rate, F ?

e) What is the heat flow needed to maintain the receiving tank at $74^{\circ} \mathrm{C}$? (Use the feed stream as the reference point for enthalpy $=0$.)

See above.

